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Abstract

Purpose – To study the steady mixed convection boundary-layer flow of a micropolar fluid near the
region of the stagnation point on a double-infinite vertical flat plate is studied. The results of this paper
are important for the researchers in the area of micropolar fluids.

Design/methodology/approach – For the case considered the problem reduces to a system of
ordinary differential equations, which is solved numerically using the Keller-box method. This method
is very efficient for solving boundary-layer problems and it can easily be applied to other general
situations than that presented in this paper. Any PhD student can learn and apply it very easily.

Findings – Representative results for the velocity, microrotation and temperature profiles, as well as
for the reduced skin friction coefficient and the local Nusselt number have been obtained for the case of
strong concentration, Prandtl number of 0.7, some values of the material parameter K and the mixed
convection parameter lð$ 0Þ: Both assisting and opposing flow cases are considered. Results for the
reduced skin friction coefficient and reduced local Nusselt number as well as for the reduced velocity,
temperature and microrotation profiles are given in tables and figures. The obtained results are
compared with ones from the open literature and it is found that they are in excellent agreement.
The important conclusion is, we have been able to show that for opposing flow solutions are possible
are possible only for a limited range of values of the mixed convection parameter l.

Research limitations/implications – The results of this paper are valid only in the small region
around the stagnation point on a vertical surface and they are not applicable outside this region.

Practical implications – The theory of micropolar fluids and also the results of the present paper
can be used to explain the characteristics in certain fluids such as exotic lubricants, colloidal
suspensions or polymeric fluids, liquid crystals, and animal blood.

Originality/value – The paper is very well prepared, presented and readable. We believe that the
results are original and important from both theoretical and application point of views.
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Nomenclature
Cf ¼ skin friction coefficients
f ¼ reduced stream function
g ¼ gravitational acceleration
Gr ¼ Grashof number
h ¼ reduced microrotation
j ¼ microinertia density
K ¼ material parameter
L ¼ reference length
n ¼ ratio of the microrotation vector

component and the fluid skin
friction at the wall

N ¼ component of the microrotation
vector normal to x-y plane

Nu ¼ Nusselt number
Pr ¼ Prandtl number
Re ¼ Reynolds number
T ¼ fluid temperature
T0 ¼ reference temperature
Tw(x) ¼ surface temperature
u, v ¼ velocity components along x and

y axes
ue(x) ¼ free stream velocity

Ue ¼ reference velocity
x, y ¼ Cartesian coordinates along the wall

and normal to it, respectively

Greek symbols
g ¼ spin gradient viscosity
b ¼ thermal expansion coefficient
h ¼ transformed variable
u ¼ dimensionless temperature
l ¼ mixed convection parameter
k ¼ vortex viscosity
m ¼ viscosity
y ¼ kinematic viscosity
r ¼ density

Subscripts
e ¼ boundary-layer edge condition
w ¼ wall condition
1 ¼ far field condition

Superscript
0 ¼ differentiation with respect to h

Introduction
During recent years the theory of micropolar fluids has received much attention and
this is because the traditional Newtonian fluids cannot precisely describe the
characteristics of the fluid flow with suspended particles. Physically micropolar fluids
may be described as the non-Newtonian fluids consisting of dumb-bell molecules or
short rigid cylindrical elements, polymer fluids, fluid suspensions, animal blood, etc.
The presence of dust or smoke, particularly in a gas, may also be modeled using
micropolar fluid dynamics. The theory of micropolar fluids, first proposed by Eringen
(1966, 1972), is capable of describing such fluids. In this theory the local effects arising
from the microstructure and the intrinsic motion of the fluid elements are taken into
account. This is a kind of continuum mechanics, and many classical flows are being
re-examined to determine the effects of fluid microstructure (Willson, 1970; Bergholz,
1980; Chandra Shekar et al., 1984). Early studies along these lines may be found in the
review article by Peddieson and McNitt (1970), and in the recent books by łukaszewicz
(1999) and Eringen (2001). Gorla (1983), Kumari and Nath (1984) and Guram and Smith
(1980) were the first to apply the micropolar boundary-layer theory to problems of
steady and unsteady stagnation point flows and they claimed that the micropolar fluid
model is capable of predicting results which exhibit turbulent flow characteristics,
although it is difficult to see how a steady laminar boundary-layer flow could appear to
be turbulent. Studies of micropolar fluids have recently received considerable attention
due to their application in a number of processes that occur in industry. Such
applications include the extrusion of polymer fluids, solidification of liquid crystals,
cooling of a metallic plate in a bath, animal bloods, exotic lubricants and colloidal and
suspension solutions, for example, for which the classical Navier-Stokes theory is
inadequate.
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The aim of the present paper is to study the steady mixed convection
boundary-layer flow of a micropolar fluid near the stagnation point on a
double-infinite vertical surface with a free stream velocity ue(x) and a prescribed
surface temperature Tw(x). However, only the case when Tw(x) varies linearly with the
distance along the plate, x, is considered. It is shown that for this case the partial
differential equations governing the fluid flow and heat transfer reduce to a set of
ordinary differential equations, which have been solved numerically using an implicit
finite-difference scheme known as the Keller-box scheme. Mixed convection in
stagnation flows is important when the buoyancy forces, due to the temperature
difference between the wall and the free stream, become high and thereby modify the
flow and thermal fields significantly. In addition, the local heat transfer rate and local
shear stress can be significantly enhanced or diminished in comparison to the pure
forced convection case. It should, however, be mentioned that in such flows, the flow
and thermal fields are no longer symmetric with respect to the stagnation line.

Governing equations
Consider a double-infinite vertical flat plate, which is placed in a micropolar fluid of
uniform ambient temperature T1. It is assumed that the temperature of the plate is
Tw(x) and the velocity of the external flow is ue(x). However, only the case when the
temperature of the plate varies linearly with the distance x is considered. The flow
configuration is shown schematically in Figure 1 together with the corresponding
Cartesian coordinates in the vertical and horizontal directions.

Thus, the plate temperature and the condition far from the plate is assumed to be
given by

TwðxÞ ¼ T1 þ T0ðx=LÞ; ueðxÞ ¼ U eðx=LÞ ð1Þ

where Ue is a reference velocity, L is a characteristic length and T0 . 0 is a
reference temperature. Under the boundary layer and Boussinesq assumptions, the

Figure 1.
Physical model and
coordinate system

HFF
15,7

656



steady laminar boundary-layer equations governing the mixed convection flow are
given by

›u
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subject to the boundary conditions:

uðx; 0Þ ¼ vðx; 0Þ ¼ 0;

N ðx; 0Þ ¼ 2n
›u

›y
ðx; 0Þ; x $ 0

Tðx; 0Þ ¼ TwðxÞ ¼ T1 þ Toðx=LÞ; x $ 0

uðx;1Þ ¼ ueðxÞ ¼ U eðx=LÞ;

N ðx;1Þ ¼ 0;

Tðx;1Þ ¼ T1; x $ 0

ð6Þ

where u and v are the velocity components along the x and y axes, respectively, N is
the component of the microrotation vector normal to the x-y plane, T is the fluid
temperature, g is the magnitude of the acceleration due to gravity, r is the density,
m is the absolute viscosity, k is the vortex viscosity, g is the spin-gradient viscosity,
y is the kinematic viscosity, j is the microinertia density, Pr is the Prandtl number
and n is a constant such that 0 # n # 1: It should be mentioned that the case n ¼ 0;
called strong concentration by Guram and Smith (1980), indicates N ¼ 0 near the
wall, represents concentrated particle flows in which the microelements close to the
wall surface are unable to rotate (Jena and Mathur, 1981). The case n ¼ 1=2 indicates
the vanishing of anti-symmetrical part of the stress tensor and denotes weak
concentration (Ahmadi, 1976). The case n ¼ 1; as suggested by Peddieson (1972), is
used for the modelling of turbulent boundary-layer flows. We shall consider here only
the values of n ¼ 0 (strong concentration). Also, the plus and minus signs in equation
(3) pertain, respectively, to the buoyancy assisting and the buoyancy opposing flow
regions. Figure 1 shows such a flow field for a vertical, heated surface with the upper
half of the flow field being assisted and the lower half of the flow field being opposed
by the buoyancy force. The reverse trend will occur if the plate is cooled below the
ambient temperature T1. Our results will thus be true for both the heated and cooled
surface conditions when the appropriate (assisting and opposing) flow regions are
selected.
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We introduce now the following similarity variables

h ¼ ðU e=Ly Þ
1=2y; uðx; yÞ ¼ U eðx=LÞf

0ðhÞ; vðx; yÞ ¼ 2ðU ey=LÞ
1=2f ðhÞ

N ðx; yÞ ¼ ðU e=LÞðU e=Ly Þ
1=2ðx=LÞhðhÞ; Tðx; yÞ ¼ T1 þ T0ðx=LÞuðhÞ

l ¼ Gr=Re 2; Gr ¼ gbT0L
3=y 2; Re ¼ U eL=y

ð7Þ

where Gr is the Grashof number, Re is the Reynolds number, l ( ¼ constant) and
positive is the mixed convection parameter and prime denotes differentiation with
respect to h.

We follow the work of many recent authors by assuming that g is given by, see Rees
and Bassom (1996) or Rees and Pop (1998),

g ¼ ðmþ k=2Þj ¼ mð1 þ K=2Þj ð8Þ

where K ¼ k=m is the material parameter. Using equations (7) and (8) in
equations (2)-(5), we get

ð1 þ KÞf 000 þ ff 00 þ 1 2 f 02 þ Kh0 ^ lu ¼ 0 ð9Þ

1 þ
K

2

� �
h00 þ fh0 2 f 0h2 Kð2hþ f 00Þ ¼ 0 ð10Þ

1

Pr
u00 þ f u0 2 f 0u ¼ 0 ð11Þ

subject to the boundary conditions:

f ð0Þ ¼ f 0ð0Þ ¼ 0; uð0Þ ¼ 1; hð0Þ ¼2nf 00ð0Þ

f 0!1; u!0; h!0 as h!1
ð12Þ

It should be noted that for K ¼ 0 (Newtonian fluid), equations (9-11) reduce
to those found by Ramachandran et al. (1988) for the power law temperature
TwðxÞ ¼ T1 þ bxn with n ¼ 1 in their equations (17) and (18).

Of interest in this problem is also the skin friction coefficient, which can be
expressed as

Cf ¼
ðx=LÞ

1
2 ru

2
eðxÞ

ðmþ kÞ
›u

›y
þ kN

� �
y¼0

¼ 2Re21=2 1 þ ð1 2 nÞKf g f 00ð0Þ

Similarly, the heat transfer coefficient in terms of the Nusselt number can be written as

Nu ¼
L

Tw 2 T1

2
›T

›y

� �
y¼0

¼ Re 1=2½2u 0ð0Þ� ð14Þ

Results and discussion
Equations (9-11), subject to the boundary conditions (12), were solved numerically using
a very efficient implicit finite-difference method, namely the Keller-box method, in
conjunction with the Newton’s linearization technique as described by Cebeci and
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Bradshaw (1984). Representative results for the velocity, microrotation and temperature
profiles, as well as for the reduced skin friction coefficient and the local Nusselt number
have been obtained for n ¼ 0 (strong concentration), Pr ¼ 0:7 and some values of the
material parameter K and the mixed convection parameter lð$ 0Þ: However, it should
be mentioned that all of the results that are presented here are valid only in the small
region around the stagnation point and they are not applicable outside this region.

Results for the reduced skin friction coefficient, f00(0), and the reduced local Nusselt
number, 2u0(0), are given in Table I for n ¼ 0; K ¼ 0 (Newtonian fluid) and l ¼ 1
when the Prandtl number varies in the range 0:7 # Pr # 100: Both the cases of
assisting and opposing flows are considered. The values found by Ramachandran et al.
(1988) have also been included in this table and it is seen that there is an excellent
agreement between these results. Also, it is noticed, as expected, that when the value of
Pr increases, the thermal boundary-layer thickness decreases and this leads to an
increase in the local Nusselt number. The trends are reverse for buoyancy assisting
and buoyancy opposing flow cases. For opposing flow, the reduced skin friction
coefficient increases as the Prandtl number increases. However, the same trends
happen for the local Nusselt number in the both buoyancy assisting and opposing flow
cases. These behaviours are observed for both buoyancy assisting and opposing flow
cases with the latter case having lower values of the reduced skin friction coefficient
and the local Nusselt number than the former case.

The variation of the reduced skin friction coefficient, f 00ð0Þ; and the reduced local
Nusselt number, 2u0ð0Þ; with the mixed convection parameter lð$ 0Þ are shown in
Figures 2 and 3, respectively, for n ¼ 0 (strong concentration), Pr ¼ 0:7 and some
values of the material parameter K. Values of f00(0) and 2u0(0) are also given in Table II
but only for the opposing flow situation. These figures show that in the case of
assisting flow, values of f00(0) and 2u0(0) increase, this increase being substantial in
comparison to the case of forced convection flow ðl ¼ 0Þ: This may be attributed to the
increase in the velocity caused by the assisting buoyancy forces. However, values of
f00(0) and 2u0(0) decrease as the material parameter K increases. On the other hand, for
the buoyancy opposing flow situation, the adverse pressure gradient increases as the
mixed convection parameter l increases, and this causes the flow to separate and
eventually to reverse, i.e. the local skin friction, f00(0), and the local Nusselt number,
2u0(0), become zero for some values of l, see Figures 2 and 3. The values of l for which
f 00ð0Þ ¼ 0 and 2u0ð0Þ ¼ 0 are given in Table III. Thus the assisting flow leads to a
direct heat flow ð2u0ð0Þ . 0Þ; i.e. from the wall to the surrounding fluid, while the

Buoyancy assisting flow Buoyancy opposing flow
Pr f00(0) 2u0(0) f00(0) 2u0(0)

0.7 1.706376 (1.7063) 0.764087 (0.7641) 0.691693 (0.6917) 0.633269 (0.6332)
7 1.517952 (1.5179) 1.722775 (1.7224) 0.923528 (0.9235) 1.546374 (1.5403)
20 1.448520 (1.4485) 2.458836 (2.4576) 1.003158 (1.0031) 2.269380 (2.2683)
40 1.410094 (1.4101) 3.103703 (3.1011) 1.045989 (1.0459) 2.907781 (2.9054)
60 1.390311 (1.3903) 3.555404 (3.5514) 1.067703 (1.0677) 3.356338 (3.3527)
80 1.377429 (1.3774) 3.914882 (3.9095) 1.081719 (1.0817) 3.713824 (3.7089)
100 1.368070 (1.3680) 4.218462 (4.2116) 1.091840 (1.0918) 4.015974 (4.0097)

Note: ( ) Results by Ramachandran et al. (1988)

Table I.
Values of f00(0) and 2u0(0)

for K ¼ 0 (Newtonian
fluid), l ¼ 1; n ¼ 0 and
some values of Pr when

the flow is buoyancy
assisting or buoyancy
opposing, respectively
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opposing flow leads to a reversed heat flow ð2u0ð0Þ , 0Þ; i.e. from the surrounding
fluid to the wall, respectively. We also notice that solutions do not exist beyond some
critical value of the parameter l. Turning (or critical) points Ci ði ¼ 1; 2, 3, 4) occur
before the singular points Si (i ¼ 1; 2, 3, 4) are reached, and dual solutions exist for
some values of l when the flow is opposed. It should be mentioned that it is very
difficult to obtain the exact coordinates for the points Si. The computations have been
performed until a singularity occurs at these points, i.e. where the solution does not
converge, and the calculations where terminated at this location. Further, it is seen that
in the case of opposing flow the values of the ordinates of all singular points Si ði ¼ 1;
2, 3, 4) are negative for both the reduced skin friction coefficient, f00(0), and reduced local
Nusselt number, 2u0(0) for the values of n and of the material parameter K considered.
However, the values of the coordinates of the critical points Ci ði ¼ 1; 2, 3, 4) are
negative for the reduced skin friction coefficient, f00(0), while they are positive for the
reduced local Nusselt number, 2u0(0), for the values of n and K considered. To this end,
we also notice from Figures 2 and 3 that for some values of l when the flow is
opposing, the reduced skin friction, f00(0), and local Nusselt number, 2u0(0), decrease
and for other values of l they increase with increase in the material parameter K.

Representative velocity, temperature and microrotation profiles are shown in
Figures 4-14 for n ¼ 0 (strong concentration), Pr ¼ 0:7 and some values of the
parameters K and l. The first and second (dual) solutions are also shown in these
figures for the case of opposing flow with l ¼ 1:5; 2, 2.2, 2.4 and 2.5. It is seen from
Figures 4, 5, 6, 8 and 9 that as the material parameter K increases, the velocity profiles

Figure 2.
Variation of f00(0) with l
for Pr ¼ 0:7 and some
values of K
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f0(h) are found to diminish and the peak velocity decreases, while the temperature
profiles u(h) increase. Therefore, the parameter K has a retarding effect on the flow
field. However, the peak values of the microrotation profiles hðhÞ shown in Figures 7
and 10 increase as K increases. It is also observed from Figures 4, 5, 6, 8, 9 and 11 that
the velocity and temperature profiles for the micropolar fluid ðK . 0Þ are larger than
that for the Newtonian fluid ðK ¼ 0Þ: This phenomenon reflects the fact that
increasing the value of K results in an enhancement of the total viscosity in the fluid
flow, thus decreasing the velocity and the heat transfer rate. The decrease of the
velocity profiles owing to the influence of vortex viscosity gives rise to the less heat
transfer rate from the wall, thus increasing the hydrodynamic and thermal
boundary-layer thicknesses. Further, we observe from Figures 7, 10 and 13 that the
microrotation gradient h0 is negative near the plate and it gradually increases, i.e.
accelerates the fluid far away from the plate. The term Kh0 in equation (9) shows that a
negative microrotation gradient retards the fluid near the plate, while a positive
microrotation gradient accelerates the fluid far away from the plate. This is not
surprising since for a given Prandtl number Pr, the fluid effectively becomes more
“viscous” with increasing K values (note the coefficient of the diffusing term in
equation (9)). Consequently, the velocity gradient at the wall decreases, with an
accompanying increase in the momentum boundary-layer thickness. This behaviour is
also observed in the case of temperature profiles shown in Figures 5, 8 and 11. All these
observations are in agreement with the results reported by Cheng and Wang (2000) for
the forced convection in micropolar fluid flow over a wavy surface. Finally,

Figure 3.
Variation of 2u 0(0) with l

for Pr ¼ 0:7 and some
values of K
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Table II.
Values of f00(0) and 2u0(0)
for different values of l
with Pr ¼ 0:7; n ¼ 0
(strong concentration of
microelements) and
K ¼ 0; 1, 2, 3 when the
flow is opposing
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Figures 12-14 show the dual solutions for the velocity, microrotation and temperature
profiles when the flow is opposing with the mixed convection parameter l ¼ 2;
Pr ¼ 0:7 and K ¼ 0 (Newtonian fluid), 1 and 3. It can be seen that the thickness of the
dual hydrodynamic, microrotation and thermal boundary layers increase with the
increase of K. It is worth mentioning that such dual solutions for the two-dimensional
stagnation point flow of a micropolar fluid have not been reported before in the
literature. As was pointed out by Afzal and Hussain (1984) for a Newtonian fluid
ðK ¼ 0Þ; and Nazar et al. (2003) for a micropolar fluid, it is plausible that the solution
which occurs physically may depend on the manner in which the temperature field is
imposed. However, in such problems where dual solutions occur then the upper
solution curves (first dual solutions) are usually stable whilst the lower curves (the
second dual solutions) are unstable.

l
Material parameter K f 00ð0Þ ¼ 0 2u 0ð0Þ ¼ 0

0 1.9608 1.5111
1 2.1837 1.7081
2 2.3194 1.8274
3 2.4290 1.9206

Table III.
Values of l for the case of

opposing flow when
f 00ð0Þ ¼ 0 and 2u0ð0Þ ¼ 0

for n ¼ 0; Pr ¼ 0:7 and
some values of K

Figure 4.
Velocity profiles for K ¼ 0

(Newtonian fluid),
Pr ¼ 0:7 and some

values of l
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fluid
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Figure 6.
Velocity profiles for
K ¼ 1; Pr ¼ 0:7 and
some values of l

Figure 5.
Temperature profiles for
K ¼ 0 (Newtonian fluid),
Pr ¼ 0:7 and some
values of l
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Figure 8.
Temperature profiles for

K ¼ 1; Pr ¼ 0:7 and some
values of l

Figure 7.
Microrotation profiles for
K ¼ 1; Pr ¼ 0:7 and some

values of l
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Figure 10.
Microrotation profiles for
K ¼ 3; Pr ¼ 0:7 and
some values of l

Figure 9.
Velocity profiles for
K ¼ 3; Pr ¼ 0:7 and
some values of l
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Figure 12.
Velocity profiles for l ¼ 2;
Pr ¼ 0:7 and some values

of K when the flow is
opposing

Figure 11.
Temperature profiles for

K ¼ 3; Pr ¼ 0:7 and some
values of l
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Figure 14.
Temperature profiles for
l ¼ 2; Pr ¼ 0:7 and some
values of K when the flow
is opposing

Figure 13.
Microrotation profiles for
l ¼ 2; Pr ¼ 0:7 and some
values of K when the flow
is opposing
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Conclusions
In this paper we have studied the problem of steady mixed convection boundary-layer
flow of a micropolar fluid near the region of a stagnation point on a heated or cooled
vertical surface. It is found that the governing partial differential equations become
similar, i.e. reduce to ordinary differential equations, when the surface temperature of
the plate varies linearly with the distance x along the plate. Numerical solutions of
these ordinary differential equations have been presented for a the parameter n ¼ 0
(strong concentration), some values of the Prandtl number Pr and over a range values
of the material parameter K and the physically relevant mixed convection parameter
values, lð$ 0Þ; which models the cases in which the buoyancy forces are both
assisting and opposing the free stream. It is found for the opposing flow case that dual
solutions exist and these solutions have been discussed in detail.
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